Optimization of a micro-magnet array for Majorana fermions in a two-dimensional electron gas.

Sara Turcotte^{*1}, Samuel Boutin¹, Julien Camirand Lemyre¹, Michel Pioro-Ladrière¹, and Ion Garate¹

¹Institut quantique et département de physique, Université de Sherbrooke – 2500 boul. de l Úniversité, Sherbrooke, QC J1K 2R1, Canada

Résumé

Majorana fermions are topologically protected quasi-particles that appear at the end of unidimensional semiconductor wires with large spin-orbit coupling and induced superconductivity. While current implementations mostly rely on nanowires with large intrinsic spin-orbit coupling, these approaches offer poor control on properties such as the length of the wire and the confinement potential. Here, a versatile design consisting of a micro-magnet array is explored to engineer the spin-orbit coupling in a two-dimensional electron gas. With numerical simulations of different geometries, suitable conditions for the experimental observation of Majorana fermions in gallium arsenide and silicon are determined.

*Intervenant